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Abstract. We give the decomposition of the Kronecker products and the symmetrized
Kronecker squares of all the fundamental representations of the harmonic series of unitary
irreducible representations of U(p, q). The results for U(2, 2) are relevant to two-electron
hydrogenic-like atoms.

1. Introduction

Bohr, in his very first paper [3], on what has become known as ‘The Bohr-model’ of
the atom, made the surprising discovery that the energies of levels of the non-relativistic
hydrogen atom could be expressed (in appropriate units) as simply

En = − 1

n2
with n = 0, 1, 2, . . . .

With the advent of the Schrödinger equation for the H atom it became apparent that each
value ofn could be associated with orbital angular momenta of

` = 0, 1, 2, . . . , n− 1

and associated with each value of` there were(2` + 1) values of the angular momentum
projection eigenvaluesm` leading to each energy levelEn being associated with(n − 1)2

eigenfunctions. Initially, such a high degeneracy appeared surprising. Pauli [7] noted
that in a purely Coulombic central field there was an additional constant of motion
associated with the Runge–Lenz vector and from there it led to the realization that the
observed degeneracies were precisely the dimensions of certain irreducible representations
of the group SO(4) ∼ SU(2) × SU(2), in particular those commonly designated as
[n− 1, 0] ∼ {n− 1} × {n− 1}.

Many years later, Barut and Kleinert [2] observed that all the discrete levels of a H atom
spanned a single infinite-dimensional irreducible representation of the non-compact group
SO(4, 2) ∼ SU(2, 2) with the group being referred to as thedynamical groupof the H atom
[2, 9]. The Runge–Lenz vector ceases to be a constant of motion for two or more electrons in
a central Coulomb field [2, 9, 10, 4] and the SO(4) symmetry is broken. Nevertheless, it can
be useful to consider then-electron states starting with the single irreducible representation
of SU(2, 2), or more simply U(2, 2), and then forming symmetrizedn-fold tensor products
which will be the central problem considered here. For greater generality we shall initially
consider the group U(p, q) as previously studied by King and Wybourne [6]. After a

0305-4470/97/134851+06$19.50c© 1997 IOP Publishing Ltd 4851



4852 J-Y Thibon et al

brief sketch of the relevant properties of U(p, q) we tackle the problem of resolving the
Kronecker powers of the relevant irreducible representation into its relevant symmetrized
powers, namely the problem of plethysms in U(p, q). In the process we are able to
give closed results for the second powers of the fundamental harmonic series irreducible
representations of U(p, q) which thus yields, in the case of two electrons, the appropriate
spin triplet and singlet states.

2. The fundamental harmonic series irreducible representations of U(p, q)

Following [6], we may embed the non-compact group U(p, q) into Sp(2p + 2q,R) whose
harmonic representatioñ1 decomposes as

1̃→ H = H0+
∞∑
m=1

(Hm +H−m) (1)

where

H0 = {1(0̄; 0)} (2a)

Hm = {1(0̄;m)} m = 1, 2, . . . (2b)

H−m = {1(m̄; 0)} m = 1, 2, . . . . (2c)

Upon restriction to the maximal compact subgroup U(q)× U(p) we have

H0 = {1(0̄; 0} → (0× ε)
( ∞∑
j=0

{j̄} × {j}
)

(3a)

Hm = {1(0̄;m)} → (0× ε)
( ∞∑
j=0

{j̄} × {m+ j}
)

(3b)

H−m = {1(m̄; 0)} → (0× ε)
( ∞∑
j=0

{m+ j} × {j}
)
. (3c)

The harmonic series unitary irreducible representations (abbrieviated to unirreps){k(ν̄;µ)}
of U(p, q) are generated by considering powers [5]Hk of H . Under restriction from
U(pk, qk) to U(p, q)× U(k)

H →
∑
ν,µ

{k(ν̄;µ)} × {ν̄;µ} (4)

where the conjugate partitions(ν̃) and(µ̃) satisfy the constraints [5]

µ̃1+ ν̃1 6 k (5a)

µ̃1 6 p and ν̃1 6 q. (5b)

3. Kronecker products for all of the fundamental harmonic series unirreps

The Kronecker product of two arbitrary unirreps of U(p, q) may be evaluated following [6]
to give

{k(ν̄;µ)} × {`(τ̄ ; σ)} =
∑
ζ

{k + `({ν̄s}k{τ̄s}`{ζ̄ }; {µs}k{σs}`{ζ })} (6)

where the notation is as in [6] and it is understood that

(ρ̄; λ)k+`,p,q =
{
(ρ̄; λ) if λ̃1 6 p, ρ̃1 6 q and λ̃1+ ρ̃1 6 k + `
0 otherwise.

(7)
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Specialization of (6) to the fundamental harmonic series of U(p, q) yields the following
cases: form, r, s > 0,

H 2
0 =

∞∑
n=0

{2(n̄; n)} (8a)

H 2
m =

∞∑
n=0

{2(n̄; n+ 2m)} +
m∑
p=1

{2(0̄; 2m− p, p)} (8b)

H 2
−m =

∞∑
n=0

{2(n+ 2m; n)} +
m∑
p=1

{2(2m− p, p; 0)} (8c)

Hm ×H−m =
∞∑
k=0

{2(m+ k;m+ k)} (8d)

Hr ×Hs =
min(r,s)∑
x=0

{2(0̄; r + s − x, x)} +
∞∑
k=1

{2(k̄; r + s + k} (8e)

H−r ×H−s =
min(r,s)∑
x=0

{2(r + s − x, x; 0)} +
∞∑
k=1

{2(r + s + k; k)} (8f)

H−r ×Hs = {2(r̄; s)} +
∞∑
k=1

{2(r + k; s + k} (8g)

H0×Hm = {2(0̄;m)} +
∞∑
k=1

{2(k̄;m+ k)} (8h)

H0×H−m = {2(m; 0)} +
∞∑
k=1

{2(m+ k; k)}. (8i)

4. Symmetrized squares of the fundamental harmonic representations

To separate the Kronecker squares of the representationsHm of U(p, q) into its symmetric
and antisymmetric parts, we first solve the corresponding problem for the complete harmonic
representationH . This is done by restricting theH of U(2p, 2q) through the chain

U(2p, 2q) ⊃ U(p, q)× U(2) ⊃ U(p, q)× S2 ⊃ U(p, q). (9)

Under U(2p, 2q) ↓ U(p, q)×U(2), equation (4), and constraints (5a) and (5b) with k = 2
yield

H →
∑

ν̃1+µ̃162

{2(ν̄;µ)} × {ν̄;µ}. (10)

Therefore, we just have to determine the restriction toS2 of the U(2) representations{ν̄;µ}.
It is known ([1], see also [8]) that the Frobenius characteristic of the decomposition of

{m} under U(k) ↓ Sk is the coefficient ofzm in the series

hk

(
X

1− z
)
=

k∏
j=1

1

1− zj
∑
λ`k

K̃λ,1k (z)sλ (11)

whereK̃λ,1k (z) are the (cocharge) Kostka–Foulkes polynomials. In particular, fork = 2,
{m} ↓ S2 is the coefficient ofzm in

1

(1− z)(1− z2)
[(2)+ z(11)] (12)
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so that

{m} → p2(m)(2)+ p2(m− 1)(11) (13)

where p2(m) is the number of partitions ofm into parts not greater than 2, that is,
p2(m) = dm+1

2 e.
Taking into account the U(2) equivalences{0̄;µ1µ2} ≡ εµ2{µ1 − µ2}, {m̄; n} ≡

ε−m{n+m} and{ν1ν2; 0} ≡ ε−ν1{ν1− ν2}, we obtain

{0̄;µ1µ2} →
{
p2(µ1− µ2)(2)+ p2(µ1− µ2− 1)(11) for µ2 even

p2(µ1− µ2− 1)(2)+ p2(µ1− µ2)(11) for µ2 odd
(14a)

{m̄; n} →
{
p2(m+ n)(2)+ p2(m+ n− 1)(11) for m even

p2(m+ n− 1)(2)+ p2(m+ n)(11) for m odd
(14b)

{ν1ν2; 0} →
{
p2(ν1− ν2)(2)+ p2(ν1− ν2− 1)(11) for ν1 even

p2(ν1− ν2− 1)(2)+ p2(ν1− ν2)(11) for ν1 odd.
(14c)

Now, we have

H ⊗ {2} =
(
H0+

∞∑
m=1

(Hm +H−m)
)
⊗ {2} = H0⊗ {2} +H0×

∞∑
m=1

(Hm +H−m)

+
( ∞∑
m=1

Hm

)
⊗ {2} +

∞∑
r,s=1

Hr ×H−s +
( ∞∑
m=1

H−m

)
⊗ {2} = H0⊗ {2}

+
∞∑
m=1

Hm ×H−m + R.

To extractH0⊗ {2} from H ⊗ {2}, we remark that since under U(p, q) ↓ U(p)× U(q)

H0→ (0× ε)
∞∑
m=0

{m̄} × {m}

the Kronecker square ofH0 can only contain terms whose restriction to U(p)× U(q) is a
sum of representations(0× ε2){ν̄;µ} such that|ν| = |µ|. Clearly, the terms inR are not of
this form, and to obtainH0⊗{2}, we just need to compute the terms of the form{2(m̄;m)}
in H ⊗ {2} and to remove the contribution of

∑∞
m=1Hm ×H−m.

We know from the above discussion that the multiplicity of{2(m̄;m)} in H ⊗ {2} is
equal top2(m + m) = m + 1 for m even, and top2(m + m − 1) = m for m odd. On the
other hand,

Hm ×H−m =
∞∑
k=0

{2(m+ k;m+ k)}

so that a given{2(m̄;m)} occurs exactlym times in
∑∞

k=1Hk × H−k. Removing this
contribution, we are left with

H0⊗ {2} =
∞∑
k=0

{2(2k; 2k)}. (15)

SinceH 2
0 =

∑∞
m=0{2(m̄;m)}, we also have

H0⊗ {12} =
∞∑
k=0

{2(2k + 1; 2k + 1)}. (16)
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To split the square ofHm (m > 1), we first observe that under restriction to U(p)×U(q),
it yields a sum of representations of the form(0× ε2){ν̄} × {µ} such that|µ| = |ν| + 2m.
Next, we proceed as above to extract it fromH ⊗ {2}. We have

H ⊗ {2} =
(
Hm +

∑
j 6=m

Hj

)
⊗ {2} = Hm ⊗ {2} +Hm ×

∑
j 6=m

Hj +
( ∞∑
j=1

Hm−j

)
⊗ {2}

+
( ∞∑
j=1

Hm−j

)
×
( ∞∑
k=1

Hm+k

)
+
( ∞∑
j=1

Hm+j

)
⊗ {2}.

Therefore, to extractHm ⊗ {2}, we just have to select fromH ⊗ {2} the terms having the
correct restriction property to U(p) × U(q) and to subtract the contribution of the crossed
productsHm−j ×Hm+j (j > 1). Suppose first thatm > 1, then,

∞∑
j=1

Hm−j ×Hm+j = H0×H2m +
m−1∑
r=1

Hr ×H2m−r +
∞∑
r=1

H−r ×H2m+r . (17)

The terms of this sum are

H0×H2m =
∞∑
k=0

{2(k̄; 2m+ k)} (18a)

Hr ×H2m−r =
r∑
i=1

{2(0̄; 2m− i, i)} +
∞∑
k=0

{2(k̄; 2m+ k)} (18b)

H−r ×H2m+r =
∞∑
k=0

{2(r + k, 2m+ r + k)} (18c)

so that
∞∑
j=1

Hm−j ×Hm+j =
m−1∑
i=1

(m− i){2(0̄; 2m− i, i)} +
∞∑
k=0

(m+ k){2(k̄; 2m+ k)}. (19)

Now, the multiplicity of{2(0̄; 2m− i, i)} in H ⊗{2} is p2(2m−2i) = m− i+1 for i even,
andp2(2m − 2i − 1) = m − i for i odd. Similarly, the multiplicity of{2(k̄; 2m + k)} in
H ⊗ {2} is equal top2(2m+ 2k) = m+ k+ 1 for k even, and top2(2m+ 2k− 1) = m+ k
for k odd. Finally, we are left with

Hm ⊗ {2} =
bm/2c∑
i=1

{2(0̄; 2m− 2i, 2i)} +
∞∑
k=0

{2(2k; 2m+ 2k)}. (20a)

Similarly, we obtain

Hm ⊗ {12} =
b(m−1)/2c∑

i=0

{2(0̄; 2m− 2i − 1, 2i + 1)} +
∞∑
k=0

{2(2k + 1; 2m+ 2k + 1)}. (20b)

Likewise,

H−m ⊗ {2} =
bm/2c∑
i=1

{2(2m− 2i, 2i; 0)} +
∞∑
k=0

{2(2m+ 2k; 2k)} (20c)

H−m ⊗ {12} =
b(m−1)/2c∑

i=0

{2(2m− 2i − 1, 2i + 1; 0)} +
∞∑
k=0

{2(2m+ 2k + 1; 2k + 1)}. (20d)
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5. Conclusion

We have been able to obtain complete results for all the Kronecker products, and their
symmetrized squares, for all the fundamental harmonic unirreps of U(p, q) expressing them
in a compact closed form. The plethysms of the square of the unirrepH0 for U(2, 2) give
the complete set of U(2, 2) unirreps that arise in a two-electron hydrogenic-like atom with
the symmetric part describing the spin singlets (S = 0) and the antisymmetric part the
spin triplets (S = 1). The groundstate 1s2(1S) is the first level of an infinite tower of
states associated with the{2(0̄; 0)} unirrep while the lowest3SP level is the first level of an
infinite tower associated with the{2(1̄; 1)} unirrep. A complete account of the two-electron
hydrogen-like states remains to be considered but knowing the relevant U(2, 2) unirepps
is a significant beginning. For ann-electron hydrogen-like atom (n > 2) the resolution of
plethysms of the typeH0⊗{λ}(λ ` n) is a formidable task and complete results of the type
considered herein cannot be expected.
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