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Abstract. We give the decomposition of the Kronecker products and the symmetrized
Kronecker squares of all the fundamental representations of the harmonic series of unitary
irreducible representations of(W, ¢). The results for (2, 2) are relevant to two-electron
hydrogenic-like atoms.

1. Introduction

Bohr, in his very first paper [3], on what has become known as ‘The Bohr-model' of
the atom, made the surprising discovery that the energies of levels of the non-relativistic
hydrogen atom could be expressed (in appropriate units) as simply

E, = — withn =0,1,2, ....

12
n
With the advent of the Schdinger equation for the H atom it became apparent that each
value ofn could be associated with orbital angular momenta of

£=012,...,n—1

and associated with each value othere were(2¢ + 1) values of the angular momentum
projection eigenvalues:, leading to each energy levél, being associated witkn — 1)2
eigenfunctions. Initially, such a high degeneracy appeared surprising. Pauli [7] noted
that in a purely Coulombic central field there was an additional constant of motion
associated with the Runge—Lenz vector and from there it led to the realization that the
observed degeneracies were precisely the dimensions of certain irreducible representations
of the group S@) ~ SU2) x SU(2), in particular those commonly designated as
[n—=21,0]~{n—1} x {n —1}.

Many years later, Barut and Kleinert [2] observed that all the discrete lefal$iatom
spanned a single infinite-dimensional irreducible representation of the non-compact group
SQ4, 2) ~ SU(2, 2) with the group being referred to as thgnamical groupof the H atom
[2,9]. The Runge—-Lenz vector ceases to be a constant of motion for two or more electrons in
a central Coulomb field [2, 9, 10, 4] and the @®symmetry is broken. Nevertheless, it can
be useful to consider the-electron states starting with the single irreducible representation
of SU(2, 2), or more simply W2, 2), and then forming symmetrizedfold tensor products
which will be the central problem considered here. For greater generality we shall initially
consider the group (p, g) as previously studied by King and Wybourne [6]. After a
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brief sketch of the relevant properties of ) g) we tackle the problem of resolving the
Kronecker powers of the relevant irreducible representation into its relevant symmetrized
powers, namely the problem of plethysms ifJq). In the process we are able to
give closed results for the second powers of the fundamental harmonic series irreducible
representations of {p, ¢) which thus yields, in the case of two electrons, the appropriate
spin triplet and singlet states.

2. The fundamental harmonic series irreducible representations of (p, q)

Following [6], we may embed the non-compact grou@plly) into Sp2p + 2¢, R) whose
harmonic representation decomposes as

A~ H=Ho+) (Hy+H.) (1)
m=1
where
Ho = {1(0; 0)} (2a)
H,, = {1(0; m)} m=12,... (2b)
H_,, = {1(m; 0)} m=12.... (20)
Upon restriction to the maximal compact subgroug@y JUx U(p) we have
Ho = {1(0; 0} - (0 x s)(Z{f} x {j}) (32)
j=0
H, = {1(0; m)} - (0 x s)(Z{f} x {m + j}) (30)
j=0
H_,, = {1(: 0)} > (0 x e)(Z{m+j} x {j}). (30)
j=0

The harmonic series unitary irreducible representations (abbrieviated to unigképsy)}
of U(p, q) are generated by considering powers [8f of H. Under restriction from
U(pk, gk) to U(p, g) x U(k)

H — Y (k(; ) x {7 1) @
v,
where the conjugate partitior(§) and (&) satisfy the constraints [5]
fi1+1 <k (5a)
f1 < p and V1 < gq. (5b)

3. Kronecker products for all of the fundamental harmonic series unirreps

The Kronecker product of two arbitrary unirreps ofJ g) may be evaluated following [6]
to give

k(@ W} x (L(F: o)) =Y {k+ LTI T (e} oo} (e D) (6)
¢

where the notation is as in [6] and it is understood that
(05 2) if 21 < p,pr<qgandiy+py <k+¢
0 otherwise.

(:5; )\)k-‘rl.p,q = { (7)
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Specialization of (6) to the fundamental harmonic series gb,i¢) yields the following
cases: fom,r,s > 0,

ngigamm} (8a)
Hi = 2{2(15; n+2m)} + Zm;{Z(O; 2m — p, p)} (8b)
= pn
i, = fo{zmzm; )+ i{zam—p,p; o) (59
p pn
H, x H_,, = i{z(m; m+k)} (8d)
k=0
ExIL:mg?ﬁ@n+s—mxﬂ+iiﬂﬁr+S+H (8e)
x=0 k=1
H ,xH = mmX(er){Z(m: 0} + i{Z(m; k)} (8f)
x=0 k=1
qufﬂ={%ﬁw}+giwv+hs+k} (89)
Ho x Hy = (200, m)} + g;{zaz; 1) (8
Ho x H_,, = {2(m; 0)} + ki{Z(erk; k). (8i)

4. Symmetrized squares of the fundamental harmonic representations

To separate the Kronecker squares of the representatignsf U(p, ¢) into its symmetric
and antisymmetric parts, we first solve the corresponding problem for the complete harmonic
representatiorH. This is done by restricting th& of U(2p, 2¢) through the chain

U(2p,29) D U(p,q) x U(2) D U(p,q) x S2 > U(p, 9). 9)
Under U2p, 29) | U(p, q) x U(2), equation (4), and constraintsajsand (%) with k = 2
yield
H— Y {205 )} x {9 p. (10)
v+ <2
Therefore, we just have to determine the restrictio§tof the U(2) representationéy; }.

It is known ([1], see also [8]) that the Frobenius characteristic of the decomposition of
{m} under Uk) | S is the coefficient o™ in the series

X £ _
hk<1—z) zgl_ZjZKMk(Z)Sx (11)

Ak

where Iﬁ,lk(z) are the (cocharge) Kostka—Foulkes polynomials. In particularkfer 2,
{m} | S, is the coefficient o™ in

1
A _ol@ @] (12)
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so that

{m} — p2(m)(2) + p2(m — 1)(11) (13)
where p,(m) is the number of partitions ofz into parts not greater than 2, that is,
p2(m) = ["34].

Taking into account the (2) equivalences{O; uips} = €*2{u1 — o}, {m;n} =
e ™{n + m} and {vivz; 0} = ¢ "*{v; — vy}, we obtain
_ - 2 — 2 — 111 for even
PRI p2(pa — 12)(2) + p2(u1 — u2 — (1Y) M2 (143)
p2(1 — p2 — 1D(2) + paus — 12)(11) for u, odd
p2(m +n)(2) + po(m +n — 1)(11) for m even

p2(m +n — 1)(2) + pa(m +n)(11) for m odd ()

{n‘i;n}—>{

(017: 0} > p2(v1 — v2)(2) + p2(v1 — vz — (1D for v even (140)
v P21 —v2 — 1)(2) + pa(v1 — )11  for vy odd.

Now, we have

H® {2} = (HO + Z(Hm + H—m)) ® {2} =Hy® {2} + Hp x Z(Hm + H—m)

m=1 m=1
o0 o0 o0
+<21Hm>®{2}+ ZlerH_s+( lH_m><x>{2}=Ho®{2}

o0
—}—ZHm x H_,, + R.

m=1

To extractHy ® {2} from H ® {2}, we remark that since under(W, ¢) | U(p) x U(g)
Ho — (0x €) »_{iii} x {m}
m=0

the Kronecker square dfl; can only contain terms whose restriction to/) x U(g) is a
sum of representation® x €){v; u} such thatv| = |u|. Clearly, the terms irR are not of
this form, and to obtairH ® {2}, we just need to compute the terms of the fd@; m)}
in H ® {2} and to remove the contribution @fn"zl H, x H_,,.

We know from the above discussion that the multiplicity{@fm; m)} in H ® {2} is
equal top,(m + m) = m + 1 for m even, and topo(m +m — 1) = m for m odd. On the
other hand,

o0
Hy x Hopy =Y {2(m +k:m + k))
k=0
so that a given{2(m; m)} occurs exactlym times in Y ”, Hy x H_,. Removing this
contribution, we are left with

00

Ho® {2} = ) "(2(2k; 2K)}. (15)
k=0

Since HZ = >_>°_,{2(m; m)}, we also have

Ho® {17} = ) "(2(2k + 1; 2k + 1)}. (16)
k=0
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To split the square off,, (m > 1), we first observe that under restriction top) x U(g),
it yields a sum of representations of the fottx €2){v} x {u} such thatju| = |v| + 2m.
Next, we proceed as above to extract it frdhm® {2}. We have

H®{2}=(Hm+ZHj>®{2} Hy ® {2} + Hy x Y H; +<ZH,,, ,)@{2}

j#m JjFEm j=1
00 00 00

+<Zlej> X <klem+k> + (ZleJrj) ® {2}.
Jj= = Jj=

Therefore, to extracH,, ® {2}, we just have to select froll ® {2} the terms having the
correct restriction property to () x U(g) and to subtract the contribution of the crossed
productsH,,_; x H,+; (j = 1). Suppose first thak: > 1, then,

00 m—1
> Hy_j x Hyyj = Ho x Hpp + Y _ H, xHZm,+ZH_,xH2m+, (17)
j=1 r=1 r=1
The terms of this sum are
Ho x Hay =Y {2(k: 2m + k)} (18a)
k=0
H, x Hypy = Y (20:2m —i, i)} + ) _{2(k: 2m + &)} (180)
H_, X Hppsr = Y _(20r +k.2m + 1 + k) (18c)
k=0
so that
o] m—1
> Hy_j x Hyyj = Z(m —){20; 2m — i, i)} + Z(m + k){2(k; 2m + k). (19)

j=1

Now, the multiplicity of {2(0; 2m —i, i)} in H ® {2} is p2(2m —2i) = m —i +1 for i even,
and po(2m — 2i — 1) = m — i for i odd. Similarly, the multiplicity of{2(k; 2m + k)} in
H ® {2} is equal top,(2m + 2k) = m + k + 1 for k even, and tq,(2m +2k — 1) =m +k
for k odd. Finally, we are left with

lm/2]
Hy®(2) =) (2(0;2m — 2i, 21)}+Z{2(2k 2m + 2k)}. (208)
i=1 k=0

Similarly, we obtain

L(m—1)/2]
H,®{1% = Y {20:2m—2i—1, 21+1)}+Z{2(2k+1 2m + 2k +1)}.  (200)
i=0 k=0
Likewise,
[m/2]
H_, ®{2} =) {2(2m — 2i,2i; 0)} +Z{2(2m+2k 2k)} (20c)
i=1 k=0
L(m—1)/2]

Ho,®{1%= Y {2@m—2—12+10}+ Z{Z(Zm + 2k + 1; 2% + 1)}. (20d)
i=0 k=0
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5. Conclusion

We have been able to obtain complete results for all the Kronecker products, and their
symmetrized squares, for all the fundamental harmonic unirrepg pf4) expressing them

in a compact closed form. The plethysms of the square of the unkfgefor U(2, 2) give

the complete set of (2, 2) unirreps that arise in a two-electron hydrogenic-like atom with
the symmetric part describing the spin singlefs=£ 0) and the antisymmetric part the
spin triplets § = 1). The groundstate 1€S) is the first level of an infinite tower of
states associated with tfi2(0; 0)} unirrep while the lowestSP level is the first level of an
infinite tower associated with th@(1; 1)} unirrep. A complete account of the two-electron
hydrogen-like states remains to be considered but knowing the relev@n2)Uunirepps

is a significant beginning. For anelectron hydrogen-like atonn (> 2) the resolution of
plethysms of the typély ® {A}(A F n) is a formidable task and complete results of the type
considered herein cannot be expected.
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